ВС + ВС2 + ВС3 + ВС4 + ВС5 + ... = ВС ( 1 + С + С2 + С3 + С4 + ... )
В скобках стоит сумма бесконечной геометрической прогрессии, равная, как
известно, величине 1/(1-С). Следовательно, максимально возможный суммарный
доход от первого года после вложения до скончания мира равен ВС/(1-С).
Отсюда следует, что если А/В меньше С/(1-С), то можно указать
(рассчитать) срок окупаемости проекта, но он будет существенно больше, чем
А/В. Если же А/В больше или равно С/(1-С), то проект не окупится никогда.
Поскольку максимально возможное значение С равно 0,89, то проект не
окупится никогда, если А/В не меньше 0,89/ 0,11 = 8,09.
Пусть вложения равны 1 миллиону рублей, ежегодная прибыль составляет 500
тысяч, т.е. А/В = 2. Пусть дисконт-фактор С = 0.8. Каков срок окупаемости?
При примитивном подходе (соответствующем С = 1) он равен 2 годам. А на
самом деле?
За k лет будет возвращено
ВС ( 1 + С + С2 + С3 + С4 + ...+ Сk )= ВС ( 1 - Сk+1) / (1-С) ,
согласно формуле для суммы конечной геометрической прогрессии. Для срока
окупаемости получаем уравнение
1 =0,5 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (4)
откуда 0,5 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,5. Прологарифмируем обе части
последнего уравнения: (k+1) ln 0,8 = ln 0,5 , откуда
(k+1) = ln 0,5 / ln 0,8 = (- 0,693) / ( - 0,223) = 3,11, k = 2,11.
Срок окупаемости оказался в данном примере равном 2,11 лет, т.е. увеличился
примерно на 4 недели. Это немного. Однако если В = 0,2, то вместо (3) мы
имели бы
1 =0,2 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8),
Это уравнение не имеет решения, поскольку А / В = 5 > С/(1-С) = 0.8 / (1-
0,8) =4, проект не окупится никогда. Окупаемости можно ожидать лишь в
случае А/В < 4. Рассмотрим и промежуточный случай, В = 0,33, с
"примитивным" сроком окупаемости 3 года. Тогда вместо (4) имеем уравнение
1 =0,33 х 0,8 ( 1 - 0,8 k+1) / (1- 0,8), (5)
откуда 0,76 = ( 1 - 0,8 k+1), или 0,8 k+1 = 0,24. Прологарифмируем обе
части последнего уравнения: (k+1) ln 0,8 = ln 0,24 , откуда
(k+1) = ln 0,24 / ln 0,8 = (- 1.427) / ( - 0,223) = 6,40, k = 5,40.
Итак, реальный срок окупаемости - не три года, а согласно уравнению (5)