ситуации (при "долговременном конкурентном равновесии"), как известно из
экономической теории, доходность от вложения средств в различные отрасли, в
частности, в банковские депозиты, должна быть одинакова. В современных
условиях эта величина (норма рентабельности) равна примерно 6-12% (см.,
например, [7]). Примем для определенности максимальное значение, равное
12%. Другими словами, 1 рубль через год превращается в 1,12 руб., а потому
1 рубль через год соответствует 1/1,12 = 0,89 руб. сейчас - это и есть
максимально возможное значение дисконта.
Обозначим дисконт буквой С. Как установлено выше, С - число между 0 и 1,
точнее, максимально возможное значение дисконта равно 0,89. В общем случае,
если q - банковский процент (плата за депозит), т.е. вложив в начале года в
банк 1 руб., в конце года получим (1+ q) руб., то дисконт определяется по
формуле
С = 1 / (1+ q) (1).
Отметим, что при таком подходе полагают, что банковские проценты платы за
депозит одинаковы во всех банках. Более правильно было бы считать q, а
потому и С, нечисловыми величинами, а именно, интервалами [q1 , q2] и [С1 ,
С2] соответственно. При этом связь между интервалами определяется формулой
(1):
С1 = 1 / (1+ q2) , С2 = 1 / (1+ q1) .
Следовательно, выводы, полученные с помощью рассматриваемых величин, должны
быть исследованы на устойчивость (в инженерной среде принят термин
"чувствительность") по отношению к отклонениям этих величин в пределах
заданных интервалов.
Обозначим дисконт-функцию C(t) как функцию времени t. Тогда при
постоянстве дисконт-фактора во времени дисконт-фунция имеет вид
C(t) = С^t, (2)
т.е. С возводится в степень t. Согласно формуле (2) через 2 года 1 руб.
превращается в 1,12 х 1,12 = 1,2544, через 3 - в 1,4049, следовательно, 1
руб., полученный через 2 года, соответствует 79,72 копейки сейчас, а 1
руб., обещанный через 3 года, соответствует 0,71 руб. сейчас. Другими
словами, С(2) = 0.80 (с точностью до двух знаков после запятой), а С(3) =
0,71.
Если дисконт-фактор меняется год от году, в первый год равен С1, во
второй год - С2 , в третий год - С3 ,..., в t - ый год - Сt , то в этом
общем случае дисконт-функция имеет вид
C(t) = С1 С2 С3 ... Сt . (3)
Пусть, например, С1 = 0,8, С2 = 0.7, С3 =.0.6, тогда согласно формуле (3)
имеем C(t) = 0,8 х 0,7 х 0.6 = 0,336. Если С1 = С2 = С3 =... = Сt , то